8 research outputs found

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    Constraining Plant Functional Types in a Semi-Arid Ecosystem with Waveform Lidar

    No full text
    Accurate classification of plant functional types (PFTs) reduces the uncertainty in global biomass and carbon estimates. Airborne small-footprint waveform lidar data are increasingly used for vegetation classification and above-ground carbon estimates at a range of spatial scales in woody or homogeneous grass and savanna ecosystems. However, a gap remains in understanding how waveform features represent and ultimately can be used to constrain the PFTs in heterogeneous semi-arid ecosystems. This study evaluates lidar waveform features and classification performance of six major PFTs, including shrubs and trees, along with bare ground in the Reynolds Creek Experimental Watershed, Idaho, USA. Waveform lidar data were obtained with the NASA Airborne Snow Observatory (ASO). From these data we derived waveform features at two spatial scales (1 m and 10 m rasters) by applying a Gaussian decomposition and a frequency-domain deconvolution. An ensemble random forest algorithm was used to assess classification performance and to select the most important waveform features. Classification models developed with the 10 m waveform features outperformed those at 1 m (Kappa (κ) = 0.81–0.86 vs. 0.60–0.70, respectively). At 1 m resolution, lidar height features improved the PFT classification accuracy by 10% compared to the analysis without these features. However, at 10 m resolution, the inclusion of lidar derived heights with other waveform features decreased the PFT classification performance by 4%. Pulse width, rise time, percent energy, differential target cross section, and radiometrically calibrated backscatter coefficient were the most important waveform features at both spatial scales. A significant finding is that bare ground was clearly differentiated from shrubs using pulse width. Though the overall accuracy ranges between 0.72 and 0.89 across spatial scales, the two shrub PFTs showed 0.45–0.87 individual classification success at 1 m, while bare ground and tree PFTs showed high (0.72–1.0) classification accuracy at 10 m. We conclude that small-footprint waveform features can be used to characterize the heterogeneous vegetation in this and similar semi-arid ecosystems at high spatial resolution. Furthermore, waveform features such as pulse width can be used to constrain the uncertainty of terrain modeling in environments where vegetation and bare ground lidar returns are close in time and space. The dependency on spatial resolution plays a critical role in classifi- cation performance in tree-shrub co-dominant ecosystems

    Empirical Methods for Remote Sensing of Nitrogen in Drylands May Lead to Unreliable Interpretation of Ecosystem Function

    No full text
    Nitrogen (N) has been linked to different ecosystem processes, and retrieving this important foliar biochemical constituent from remote sensing observations is of widespread interest. Since N is not explicitly represented in physically based radiative transfer models, empirical methods have been used as an alternative. The spectral bands selected during the calibration of empirical methods have been interpreted in the context of light-N interactions and, consequently, ecosystem function. The low amount of leaves on shrubs and their sparse distribution in drylands create an environment, in which the canopy structure and the bright background soil play an important role in the canopy total radiation budget. In this paper, we examine the assumption that removing the impact of canopy structure and soil will result in improved N retrieval using the empirical methods. We report the inconsistencies in the selection of spectral bands among the empirical approaches. Moreover, these methods are sensitive to the scale of the study and band transformations. Using the generalized theory of canopy spectral invariants, we found that at the canopy scale, a combination of canopy structure and soil dominates the total canopy radiation. At the plot scale, soil contributes up to 95% of the total reflectance. Correction for these two confounding factors leads to no correlation between N and vegetation reflectance at both scales. We conclude that while cross-validated predictive models may be statistically achievable, caution should be taken when interpreting their results in the context of N-light interactions and ecosystem function. Our approach can be extended to all terrestrial ecosystems with multiple layers of canopy and understory
    corecore